skip to main content


Search for: All records

Creators/Authors contains: "Graf, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In type-II Weyl semimetals (WSMs), the tilting of the Weyl cones leads to the coexistence of electron and hole pockets that touch at the Weyl nodes. These electrons and holes experience the Berry curvature generated by the Weyl nodes, leading to an anomalous Hall effect that is highly sensitive to the Fermi level position. Here we have identified field-induced ferromagnetic MnBi2-xSbxTe4as an ideal type-II WSM with a single pair of Weyl nodes. By employing a combination of quantum oscillations and high-field Hall measurements, we have resolved the evolution of Fermi-surface sections as the Fermi level is tuned across the charge neutrality point, precisely matching the band structure of an ideal type-II WSM. Furthermore, the anomalous Hall conductivity exhibits a heartbeat-like behavior as the Fermi level is tuned across the Weyl nodes, a feature of type-II WSMs that was long predicted by theory. Our work uncovers a large free carrier contribution to the anomalous Hall effect resulting from the unique interplay between the Fermi surface and diverging Berry curvature in magnetic type-II WSMs.

     
    more » « less
  2. Abstract

    Dirac and Weyl semimetals are a central topic of contemporary condensed matter physics, and the discovery of new compounds with Dirac/Weyl electronic states is crucial to the advancement of topological materials and quantum technologies. Here we show a widely applicable strategy that uses high configuration entropy to engineer relativistic electronic states. We take theAMnSb2(A= Ba, Sr, Ca, Eu, and Yb) Dirac material family as an example and demonstrate that mixing of Ba, Sr, Ca, Eu and Yb at theAsite generates the compound (Ba0.38Sr0.14Ca0.16Eu0.16Yb0.16)MnSb2(denoted asA5MnSb2), giving access to a polar structure with a space group that is not present in any of the parent compounds.A5MnSb2is an entropy-stabilized phase that preserves its linear band dispersion despite considerable lattice disorder. Although bothA5MnSb2andAMnSb2have quasi-two-dimensional crystal structures, the two-dimensional Dirac states in the pristineAMnSb2evolve into a highly anisotropic quasi-three-dimensional Dirac state triggered by local structure distortions in the high-entropy phase, which is revealed by Shubnikov–de Haas oscillations measurements.

     
    more » « less
  3. Abstract

    Strongly correlated spin systems can be driven to quantum critical points via various routes. In particular, gapped quantum antiferromagnets can undergo phase transitions into a magnetically ordered state with applied pressure or magnetic field, acting as tuning parameters. These transitions are characterized byz = 1 orz = 2 dynamical critical exponents, determined by the linear and quadratic low-energy dispersion of spin excitations, respectively. Employing high-frequency susceptibility and ultrasound techniques, we demonstrate that the tetragonal easy-plane quantum antiferromagnet NiCl2 ⋅ 4SC(NH2)2(aka DTN) undergoes a spin-gap closure transition at about 4.2 kbar, resulting in a pressure-induced magnetic ordering. The studies are complemented by high-pressure-electron spin-resonance measurements confirming the proposed scenario. Powder neutron diffraction measurements revealed that no lattice distortion occurs at this pressure and the high spin symmetry is preserved, establishing DTN as a perfect platform to investigatez = 1 quantum critical phenomena. The experimental observations are supported by DMRG calculations, allowing us to quantitatively describe the pressure-driven evolution of critical fields and spin-Hamiltonian parameters in DTN.

     
    more » « less
  4. Abstract

    Relativistic Weyl fermion quasiparticles in Weyl semimetal bring the electron’s chirality degree of freedom into the electrical transport and give rise to exotic phenomena. A topological phase transition from a topological trivial phase to a topological non-trivial phase offers a route to control electronic devices through its topological properties. Here, we report the Weyl semimetal phase in hydrothermally grown two-dimensional Tellurium (2D Te) induced by high hydrostatic pressure (up to 2.47 GPa). The unique chiral crystal structure gives rise to chiral fermions with different topological chiral charges ($${{C}}=-{{1}},+{{1}},{{and}}-{{2}}$$C=1,+1,and2). The highly tunable chemical potential in 2D Te provides comprehensive information for understanding the pressure-dependent electron band structure. The pressure-induced insulator-to-metal transition, two-carrier transport, and the non-trivial π Berry phase shift in quantum oscillations are observed in the 2D Te Weyl semimetal phase. Our work demonstrates the pressure-induced bandgap closing in the inversion asymmetric narrow bandgap semiconductor 2D Te.

     
    more » « less
  5. Abstract

    Proposed mechanisms for large intrinsic anomalous Hall effect (AHE) in magnetic topological semimetals include diverging Berry curvatures of Weyl nodes, anticrossing nodal rings or points of non-trivial bands. Here we demonstrate that a half-topological semimetal (HTS) state near a topological critical point can provide an alternative mechanism for a large AHE via systematic studies on an antiferromagnetic (AFM) half-Heusler compound TbPdBi. We not only observe a large AHE with tanΘH≈ 2 in its field-driven ferromagnetic (FM) phase, but also find a distinct Hall resistivity peak in its canted AFM phase. Moreover, we observe a large negative magnetoresistance with a value of ~98%. Our in-depth theoretical modelling indicates that these exotic transport properties originate from the HTS state which exhibits Berry curvature cancellation between the trivial spin-up and nontrivial spin-down bands. Our study offers alternative strategies for improved materials design for spintronics and other applications.

     
    more » « less
  6. Free, publicly-accessible full text available May 1, 2024
  7. Free, publicly-accessible full text available January 18, 2025
  8. Abstract

    PdTe is a superconductor withTc ~ 4.25 K. Recently, evidence for bulk-nodal and surface-nodeless gap features has been reported in PdTe. Here, we investigate the physical properties of PdTe in both the normal and superconducting states via specific heat and magnetic torque measurements and first-principles calculations. BelowTc, the electronic specific heat initially decreases inT3behavior (1.5 K < T < Tc) then exponentially decays. Using the two-band model, the superconducting specific heat can be well described with two energy gaps: one is 0.372 meV and another 1.93 meV. The calculated bulk band structure consists of two electron bands (α and β) and two hole bands (γ and η) at the Fermi level. Experimental detection of the de Haas-van Alphen (dHvA) oscillations allows us to identify four frequencies (Fα = 65 T,Fβ = 658 T,Fγ = 1154 T, andFη = 1867 T forH//a), consistent with theoretical predictions. Nontrivial α and β bands are further identified via both calculations and the angle dependence of the dHvA oscillations. Our results suggest that PdTe is a candidate for unconventional superconductivity.

     
    more » « less
  9. Free, publicly-accessible full text available November 9, 2024